Partial

Description

The partial dataset includes other tasks being performed, but there are subtrajectories where the 4 target subtasks are completed in sequence.

Dataset Specs

Total Steps

156560

Total Episodes

621

Algorithm

None

Author

Rodrigo de Lazcano

Email

rperezvicente@farama.org

Code Permalink

https://github.com/rodrigodelazcano/d4rl-minari-dataset-generation

Minari Version

0.4.3 (supported)

Download

minari download kitchen-partial-v1

Environment Specs

Note

The following table rows correspond to (in addition to the action and observation space) the Gymnasium environment specifications used to generate the dataset. To read more about what each parameter means you can have a look at the Gymnasium documentation https://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

import minari

dataset = minari.load_dataset('kitchen-partial-v1')
env  = dataset.recover_environment()

ID

FrankaKitchen-v1

Observation Space

Dict('achieved_goal': Dict('bottom burner': Box(-inf, inf, (2,), float64), 'hinge cabinet': Box(-inf, inf, (2,), float64), 'kettle': Box(-inf, inf, (7,), float64), 'light switch': Box(-inf, inf, (2,), float64), 'microwave': Box(-inf, inf, (1,), float64), 'slide cabinet': Box(-inf, inf, (1,), float64), 'top burner': Box(-inf, inf, (2,), float64)), 'desired_goal': Dict('bottom burner': Box(-inf, inf, (2,), float64), 'hinge cabinet': Box(-inf, inf, (2,), float64), 'kettle': Box(-inf, inf, (7,), float64), 'light switch': Box(-inf, inf, (2,), float64), 'microwave': Box(-inf, inf, (1,), float64), 'slide cabinet': Box(-inf, inf, (1,), float64), 'top burner': Box(-inf, inf, (2,), float64)), 'observation': Box(-inf, inf, (59,), float64))

Action Space

Box(-1.0, 1.0, (9,), float64)

entry_point

gymnasium_robotics.envs.franka_kitchen:KitchenEnv

max_episode_steps

450

reward_threshold

None

nondeterministic

False

order_enforce

True

autoreset

False

disable_env_checker

False

kwargs

{'remove_task_when_completed': False, 'terminate_on_tasks_completed': False, 'tasks_to_complete': ['microwave', 'kettle', 'light switch', 'slide cabinet']}

additional_wrappers

()

vector_entry_point

None

Evaluation Environment Specs

Note

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

import minari

dataset = minari.load_dataset('kitchen-partial-v1')
env  = dataset.recover_environment()
eval_env = dataset.recover_environment(eval_env=True)

assert env.spec == eval_env.spec