Optimal

Description

The dataset was generated using the expert bot from the BabyAI original repository and adapted to the latest version of the environment. The bot is a hard-coded planner, which solves all the tasks optimally.

Dataset Specs

Total Steps

7824

Total Episodes

1000

Dataset Observation Space

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': Text(1, 256, charset=                                                              ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdeeeffghijklmnnoopqrrssttuvwxyzz{}))

Dataset Action Space

Discrete(7)

Algorithm

BabyAI expert bot

Author

Omar G. Younis

Email

omar@farama.org

Code Permalink

https://github.com/Farama-Foundation/minari-dataset-generation-scripts

Minari Version

0.5.1 (supported)

Download

minari download minigrid/BabyAI-PutNextS4N1/optimal-v0

Environment Specs

The following table rows correspond to the Gymnasium environment specifications used to generate the dataset. To read more about what each parameter means you can have a look at the Gymnasium documentation https://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

import minari

dataset = minari.load_dataset('minigrid/BabyAI-PutNextS4N1/optimal-v0')
env  = dataset.recover_environment()

ID

BabyAI-PutNextS4N1-v0

Observation Space

Dict('direction': Discrete(4), 'image': Box(0, 255, (7, 7, 3), uint8), 'mission': MissionSpace(<function BabyAIMissionSpace._gen_mission at 0x7f51d65c7b80>, None))

Action Space

Discrete(7)

entry_point

minigrid.envs.babyai:PutNext

max_episode_steps

None

reward_threshold

None

nondeterministic

False

order_enforce

True

disable_env_checker

False

kwargs

{'room_size': 4, 'objs_per_room': 1}

additional_wrappers

()

vector_entry_point

None

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

import minari

dataset = minari.load_dataset('minigrid/BabyAI-PutNextS4N1/optimal-v0')
env  = dataset.recover_environment()
eval_env = dataset.recover_environment(eval_env=True)

assert env.spec == eval_env.spec