Expert

Description

Ant expert fine tuned policy, model training at https://github.com/Kallinteris-Andreas/gymnasium-mujuco-v5-envs-validation .

Dataset Specs

Total Steps

2000000

Total Episodes

2026

Dataset Observation Space

Box(-inf, inf, (105,), float64)

Dataset Action Space

Box(-1.0, 1.0, (8,), float32)

Algorithm

SB3/SAC

Author

Kallinteris Andreas

Email

kallinteris@protonmail.com

Code Permalink

https://github.com/Farama-Foundation/minari-dataset-generation-scripts/tree/main/scripts/MuJoCo/Ant/expert_dataset.py

Minari Version

0.5.1 (supported)

Download

minari download mujoco/ant/expert-v0

Environment Specs

The following table rows correspond to the Gymnasium environment specifications used to generate the dataset. To read more about what each parameter means you can have a look at the Gymnasium documentation https://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

import minari

dataset = minari.load_dataset('mujoco/ant/expert-v0')
env  = dataset.recover_environment()

ID

Ant-v5

Observation Space

Box(-inf, inf, (105,), float64)

Action Space

Box(-1.0, 1.0, (8,), float32)

entry_point

gymnasium.envs.mujoco.ant_v5:AntEnv

max_episode_steps

1000

reward_threshold

6000.0

nondeterministic

False

order_enforce

True

disable_env_checker

False

kwargs

{}

additional_wrappers

()

vector_entry_point

None

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

import minari

dataset = minari.load_dataset('mujoco/ant/expert-v0')
env  = dataset.recover_environment()
eval_env = dataset.recover_environment(eval_env=True)

assert env.spec == eval_env.spec