Medium¶
Description¶
The data is collected from the HumanoidStandup environment. The Agent was trained with Stable Baselines 3’s implementation of SAC
for \(10 \cdot 10^6\) steps, without the cinert
, cvel
, qfcr_actuator
, cfrc_ext
observations. This “medium” policy causes the agent to rise to an unstable position, fall over, and then stand in a knee-high position.
Dataset Specs¶
Total Steps |
1000000 |
Total Episodes |
1000 |
Dataset Observation Space |
|
Dataset Action Space |
|
Algorithm |
SB3/SAC |
Author |
Kallinteris Andreas |
kallinteris@protonmail.com |
|
Code Permalink |
https://github.com/Farama-Foundation/minari-dataset-generation-scripts |
Minari Version |
|
Download |
|
Environment Specs¶
The following table rows correspond to the Gymnasium environment specifications used to generate the dataset. To read more about what each parameter means you can have a look at the Gymnasium documentation https://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec
This environment can be recovered from the Minari dataset as follows:
import minari
dataset = minari.load_dataset('mujoco/humanoidstandup/medium-v0')
env = dataset.recover_environment()
ID |
HumanoidStandup-v5 |
entry_point |
|
max_episode_steps |
1000 |
reward_threshold |
None |
nondeterministic |
|
order_enforce |
|
disable_env_checker |
|
kwargs |
|
additional_wrappers |
|
vector_entry_point |
|
Evaluation Environment Specs¶
This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:
import minari
dataset = minari.load_dataset('mujoco/humanoidstandup/medium-v0')
env = dataset.recover_environment()
eval_env = dataset.recover_environment(eval_env=True)
assert env.spec == eval_env.spec