Medium

Description

The data is collected from the HumanoidStandup environment. The Agent was trained with Stable Baselines 3’s implementation of SAC for \(10 \cdot 10^6\) steps, without the cinert, cvel, qfcr_actuator, cfrc_ext observations. This “medium” policy causes the agent to rise to an unstable position, fall over, and then stand in a knee-high position.

Dataset Specs

Total Steps

1000000

Total Episodes

1000

Dataset Observation Space

Box(-inf, inf, (348,), float64)

Dataset Action Space

Box(-0.4, 0.4, (17,), float32)

Algorithm

SB3/SAC

Author

Kallinteris Andreas

Email

kallinteris@protonmail.com

Code Permalink

https://github.com/Farama-Foundation/minari-dataset-generation-scripts

Minari Version

0.5.2 (supported)

Download

minari download mujoco/humanoidstandup/medium-v0

Environment Specs

The following table rows correspond to the Gymnasium environment specifications used to generate the dataset. To read more about what each parameter means you can have a look at the Gymnasium documentation https://gymnasium.farama.org/api/registry/#gymnasium.envs.registration.EnvSpec

This environment can be recovered from the Minari dataset as follows:

import minari

dataset = minari.load_dataset('mujoco/humanoidstandup/medium-v0')
env  = dataset.recover_environment()

ID

HumanoidStandup-v5

entry_point

gymnasium.envs.mujoco.humanoidstandup_v5:HumanoidStandupEnv

max_episode_steps

1000

reward_threshold

None

nondeterministic

False

order_enforce

True

disable_env_checker

False

kwargs

{}

additional_wrappers

(WrapperSpec(name='Monitor', entry_point='stable_baselines3.common.monitor:Monitor', kwargs=None),)

vector_entry_point

None

Evaluation Environment Specs

This dataset doesn’t contain an eval_env_spec attribute which means that the specs of the environment used for evaluation are the same as the specs of the environment used for creating the dataset. The following calls will return the same environment:

import minari

dataset = minari.load_dataset('mujoco/humanoidstandup/medium-v0')
env  = dataset.recover_environment()
eval_env = dataset.recover_environment(eval_env=True)

assert env.spec == eval_env.spec